Phase Diagrams Ti-B-X as a Scientific Base for Development of Titanium-Boride Eutectic Alloys

A.A. Bondar¹, L.V. Artyukh¹, O.O. Bilous¹, T.Ya. Velikanova¹, S.O. Firstov¹, D.B. Miracle²

¹I.M.Frantsevich Institute for Problems of Materials Sciences, Kyiv, Ukraine ²Air Force Office of Scientific Research, Wright-Patterson (OH), USA

A creative development could be realized only as a result of complex systematic investigation, which includes phase equilibrium data and alloy composition-constitution-properties relationships. The present report is a part of such complex investigations and deals with phase equilibria in Ti-rich corners of Ti-B-X systems, where X is Zr, V, Nb, Al, Si, Ge, or Sn, as well as alloy constitution and properties.

Alloys prepared by arc-melting (cooling rates about 100°C/sec) were studied, in states as-cast and annealed at subsolidus temperatures, by light optical and scanning electron and transmission electron microscopy (LOM, SEM and TEM), electron probe microanalysis (EPMA), and X-ray diffraction (XRD) technique. Phase transformation temperatures were determined by DTA, in parallel melting points were measured by optical pyrometer after Pirani & Alterthum technique.

The systems in the ranges under investigation are characterised by the extent area of eutectic crystallisation of *bcc* metal and boride (TiB) phases. The alloying initiates a little change in the eutectic compositions, *p*-elements (Al, Si, Ge, and Sn) reduce the boron content in the eutectic by \sim 1-2 at.% and *d*-metals (Zr, V, and Nb) raise by \sim 1-2 at.% B (hence slightly increased boride content in the eutectic is characteristic of the alloys based on β -(Ti,V) or β -(Ti,Nb)).

Partitioning of alloying elements between titanium matrix and boride phases is radically different for p-elements and d-elements: p-elements (Al, Si, Ge, and Sn) dissolve fully in matrix; d-elements (Zr, V, and Nb) partition comparably between titanium and boride phases. The alloying of binary $Ti_{92.5}B_{7.5}$ alloy with V and Nb causes significant growth of hardness (by 2-2.5 GPa) in the range of $\alpha + \beta$ matrix (at ~10 to ~20 at.% V or Nb) at the temperatures up to 400°C. In this phase field the "strength break-down" temperature (the incipient temperature of transition to the mechanism of deformation controlled by diffusion) decreases by about 100°C (from 500 to 400°C).

The titanium-boride alloys based on the stabilized β -phase with the minimal V or Nb content (24 to 30 at.%) have the low hot hardness and "strength break-down" temperature (close to the initial Ti_{92.5}B_{7.5}). The further alloying with the same metal (V or Nb) has essential effect on both hardness (raised by 2-2.5 GPa up to 400°C and by 1 GPa at 700°C) and "strength break-down" temperature (elevated to 600°C), which offer some perspectives. High-alloyed eutectic alloys based on β -matrix showed the high level of hardness, especially at the temperatures 500 to 700°C.

In the Ti-Si-B and Ti-Ge-B systems the study revealed a fine eutectic structure that is formed by titanium phase and silicido-boride or germanido-boride (T) of unknown structure type. The (Ti) + T + TiB eutectic structure is characterized by high dispersivity, thickness of reinforcing rods and matrix are 0.2-0.3 μ . It possesses high hardness from room temperature to 500°C and to be of interest for development of new materials. In the alloys the unknown ternary phase was also found that forms the similar fine eutectic.

Acknowledgements. This research was suported by the Air Force Office of Scientific Research (USA) under the STCU Project P-060. The authors thank S.Yu. Artyukh, D.B. Borysov, M.P. Burka, P.S. Martsenyuk, V.M. Petyukh, T.O. Shapoval, N.I. Tsyganenko for technical assistance.